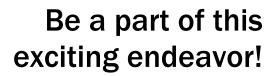


Does your car drive itself? Ours does.


PAVE (Princeton Autonomous Vehicle Engineering) is an undergraduate student-led group at Princeton University research dedicated to advancing and promoting the field of robotics through competitive challenges, selfguided research and community outreach while extracurricular providing learning leadership opportunities to student members.

There are many reasons that **PAVE** is a truly unique organization. Most notably, it is the only research group at Princeton University in which undergraduate students lead all aspects of operation: planning, design, implementation, testing, logistics, publicity and fundraising.

Building on the success of our 2008 IGVC endeavor, **PAVE** plans to continue the tradition of innovation through competitive robotics challenges by participating in the 2009 IGVC with a redesigned robot.

PAVE is currently enhancing the reliability and robustness of the electromechanical systems onboard Prospect Twelve, as well as improving the software algorithms and augmenting the vehicle's capabilities. Our goal is to create a fully autonomous vehicle capable of navigating via GPS to any destination, while obeying all traffic laws. One major milestone along the way will be passing the New Jersey State driver's exam, which we are targeting to complete in November, 2009.

PAVE is strongly committed to outreach activities in our community that help raise awareness of robotics. On-campus events include study breaks, presentations and a robotics lecture series. Off-campus, PAVE has demonstrated our vehicles at local middle schools, summer camps, and high school robotics competitions.

To date, PAVE has participated in numerous robotics competitions at the national and international level. PAVE participated in the 2005 DARPA Grand Challenge with a GMC Canvon pickup truck, which we named Prospect Eleven. In 2007, PAVE entered the DARPA Urban Challenge with a Ford Escape Hybrid named Prospect Twelve. Subsequently, PAVE competed in the 2008 Intelligent Ground Vehicle Competition (IGVC) with Kratos, a smaller ground robot custom-built from scratch.

The breakthrough developments at PAVE are only made possible through the generosity of our sponsors. We seek various levels of sponsorship and partnership with organizations or individuals. Past donors have provided us with sensors, replacement parts, technical support, and funding.

Derrick Yu

Princeton University 004 Sherrerd Hall Princeton, NJ 08544 т (609) 258 - 9346 E pave@princeton.edu w http://pave.princeton.edu

March, 2009

Dear Potential Sponsor,

PAVE (Princeton Autonomous Vehicle Engineering) is an undergraduate student-led research group at Princeton University dedicated to advancing and promoting the field of robotics through competitive challenges, self-guided research and community outreach while providing extracurricular learning and leadership opportunities to student members. Founded in 2004, PAVE consists of undergraduate students across several different academic majors, including departments in Princeton's School of Engineering and Applied Science.

PAVE participated in the 2005 Grand Challenge and the 2007 Urban Challenge, both sponsored by DARPA (Defense Advanced Research Projects Agency), part of the Department of Defense. In 2005 we modified a donated GMC Canyon pickup truck to navigate desert terrain by using a stereo camera to detect obstacles and a GPS for global navigation. We fitted the vehicle with drive-by-wire actuators and developed our own systems for processing the sensor data. For the 2007 challenge, we adapted a donated Ford Escape hybrid SUV with a series of stereo and monocular cameras for detecting obstacles and lane markings, allowing it to navigate simulated urban test courses. PAVE applied the principles learned from the DARPA challenges and custom-built a small robot to participate in the 2008 Intelligent Ground Vehicle Competition. For more detailed information on these projects, please see the enclosed sheet about our vehicles or visit our website to see videos of our vehicles in action (http://pave.princeton.edu).

PAVE provides an excellent opportunity for students to work on interdisciplinary, hands-on projects that are challenging, educational, and comparable to real-world engineering tasks. Building on our past sucesses and looking into the future, we plan to continue the development of our Urban Challenge vehicle and participate in further robotics competitions. PAVE is actively involved in outreach activities, raising awareness about robotics and technology in our community. We need your support in order to accomplish these goals. Past sponsors have provided us with sensors, equipment, technical support, testing sites, and funding. Please see the attached bill of financial needs for specific ways in which you can help us.

Thank you for your time.

Sincerely,

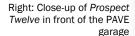
Derrick Yu President, Princeton Autonomous Vehicle Engineering

Our Vehicles

Prospect Eleven

The 2005 DARPA Grand Challenge required vehicles to navigate a 132-mile course through desert terrain, avoiding static obstacles such as boulders, tire stacks, and navigating through gates and tunnels. *PAVE*'s vehicle, a GMC Canyon named *Prospect Eleven*, earned 10th seed out of 23 teams participating in the Final Event held on October 8, 2005. *Prospect Eleven* was able to successfully traverse 9.6 miles of the course autonomously, finishing 19th and ahead of teams from Cornell and Caltech. A bug in the in the obstacle detection software caused the vehicle to stray off course.

The members of **PAVE** returned later that year to the Mojave Desert after fixing the one-line software bug. *Prospect Eleven* was able to successfully traverse the full Grand Challenge course autonomously.


Left: Team members prepare *Prospect Twelve* for an autonomous run during the 2007 DARPA Urban Challenge NQE

e Prospect Twelve After the 2005

Prospect Twelve

After the 2005 Grand Challenge, DARPA upped the ante with the DARPA Urban Challenge. For this challenge, vehicles would have to autonomously navigate a simulated urban environment, driving down roads with lane markings, parking, passing stopped vehicles and even negotiating four-way stop intersections.

Prospect Twelve was one of 35 vehicles chosen from around 90 entrants to qualify for the Urban Challenge National Qualification Event, held from October 26 to November 1, 2007. Although PAVE was not selected as one of the 11 teams to participate in the Final Event, we made a strong showing next to teams which had budgets upwards of ten times ours. Prospect Twelve continues to serve as PAVE's primary research vehicle.

Kratos

After the DARPA Urban Challenge, several team members decided to compete in a smaller-scale robotics competition, the 2008 Intelligent Ground Vehicle Competition (IGVC). The IGVC competition has three primary challenges: navigating between several GPS waypoints while avoiding obstacles in an obstacle field, running a course designated by lane markings and littered with obstacles, and a technical design presentation. For the competition, *PAVE* custom-built a 200-pound autonomous robot named *Kratos*. At the 2008 IGVC, *PAVE* finished 1st, 4th, and 6th in the Design, Navigation, and Autonomous competitions respectively, netting a 3rd place overall finish (out of 47 teams) and the Rookie of the Year award.

Above: Three team members on the 2008 IGVC team pose with *Kratos* and award certificates

PAVE Facts

PAVE has been innovating in the field of autonomous robotics since 2004.

PAVE's vehicles rely primarily on cameras coupled to image processing algorithms to perceive the environment. **PAVE** uses both monocular cameras and stereo cameras, which process image data much in the same way that humans do.

PAVE operates on an extremely tight budget. Including the donated value of sensors, computing equipment, and the car itself, our entire budget for the 2007 Urban Challenge was under \$100,000—less than one tenth of what many of the eleven finalist teams spent.

Left: Students debug software aboard Kratos while testing at the 2008 Intelligent Ground Vehicle Competition.

PAVE is the only research group at Princeton University in which undergraduate students lead all aspects of operation: planning, implementation, logistics, fundraising, testing and publication.

PAVE regularly demonstrates its vehicles at a variety of events. Recent presentations include a science festival at Montgomery Middle School in New Jersey, a technology fair at the Javits Convention Center in New York City during the New York FIRST regional competition, a Sigma Xi meeting at Princeton, and various Princeton parent and alumni events.

PAVE alumni have gone on to work at companies such as Boeing, MIT Lincoln Lab, and Google, and have continued their graduate studies at institutions such as Cornell and Stanford.

Prospect Eleven at the start gate of the 2005 DARPA Grand Challenge Final Event.

Below: Students and parents gather around for a look inside *Prospect Twelve* during the 2008 high school FIRST Robotics New York Regional at the Javits Center.

http://pave.princeton.edu

Supporting PAVE

One of *PAVE*'s fundamental principles is working within the constraints of a tight budget. We constantly seek design solutions that are cost-effective, elegant, safe, and robust.

PAVE is a wholly academic team. Although we have access to Princeton's outstanding facilities, all our day-to-day operations and purchases must be handled through either sponsorship or donation. **PAVE** is extremely grateful to those who support it—you make our work possible.

Sponsors are recognized both on our website and in our publications, increasing your corporation's visibility among Princeton engineering students. *PAVE*'s developments receive significant press coverage, and we frequently give presentations to students, alumni, and professional groups on and around campus. Where applicable, *PAVE* provides technical feedback for products and services.

Levels of Sponsorship:

Platinum - \$15,000 and up

Invitation to interact closely with *PAVE*'s students and projects
Logo featured prominently on the vehicle
Recognition in interviews, articles, *PAVE* publications, and at *PAVE* events
Priority access to *PAVE*'s vehicles for exhibitions or demonstrations
Listed as a Platinum sponsor on our website and t-shirts

Gold - \$5,000 to \$14,999

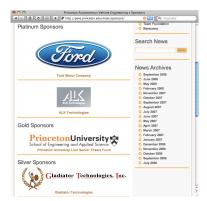
Invitation to interact closely with *PAVE*'s students
Logo featured on the vehicle
Recognition in interviews, articles, *PAVE* publications, and at *PAVE* events
Access to *PAVE*'s vehicles for exhibitions or demonstrations
Listed as a Gold sponsor on our website and t-shirts

Silver - \$2,000 to \$4,999

Logo featured on the vehicle Listed as a Silver sponsor on our website Recognition in **PAVE** publications and at **PAVE** events

Bronze - \$500 to \$1,999

Listed as a Bronze sponsor on our website Recognition in **PAVE** publications and at **PAVE** events


To donate, please make a check out to "Princeton University" with "PAVE" in the memo line, and mail it to the following address:

Princeton University

Attn: Prof. Alain Kornhauser, ORFE Dept. 229 Sherrerd Hall Princeton, NJ 08544

All contributions are tax deductible. We thank you for your support.

Below: Screenshot of the sponsor page on the **PAVE** website

Financial Needs

PAVE exists as an umbrella organization to support robotics-related research projects as well as organize and participate in robotics-related outreach activities. Projects are run independently from each other, but share the common capital and resources provided under **PAVE**, such as tools, workspace, and knowledge base.

Sponsors may choose to support either a specific project or **PAVE** as a whole. Funds designated for **PAVE** as a whole will be allocated towards capital improvement, outreach and marketing, and individual projects as needed.

We have been fortunate to have much of our equipment donated to us or provided at a discount from a wide assortment of companies. However, we still need cash donations to cover miscellaneous expenses such as hardware for sensor mounting systems, hand tools, replacement parts, prototyping, and promotional materials.

Condensed Project Budgets 2008:	Approximate cost:
PAVE Testing and Safety Equipment Capital Equipment Gas Promotional materials Misc. Tools	\$2,500 \$3,000 \$1,000 \$500 \$500
Prospect 12 Sensing Equipment Actuators Computers & Electronics Logistics	\$5,000 \$2,000 \$3,000 \$500
IGVC Sensing Equipment Robot Chassis/Drivetrain Computers & Electronics Travel & Logistics	\$2,000 \$2,000 \$1,000 \$3,000
Sample items that have been donated to us in the past:	Approximate value:
2005 Ford Escape Hybrid SUV MEMS IMU Stereo camera GPS High Resolution Optical Encoder Debugging Software	\$27,000 \$10,000 \$3,000 \$1,500 \$1,200 \$400

