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Introduction

Autonomous vehicles have the potential to revolutionize both civilian and
military transportation. In the military sector, using a human driver for non-
combat missions needlessly puts a soldier at risk. Indeed, the 2001 Defense
Authorization Act requires that by 2015, one third of all military ground
vehicles be unmanned. Toward this goal, the Defense Advanced Research
Projects Administration (DARPA) announced the 2004 DARPA Grand Chal-
lenge - a 130 mile, completely autonomous race across the deserts of Cali-
fornia and Nevada. No entrants completed this race, and the furthest entry
made it only 7.4 miles. DARPA announced a second competition to be
contested in October, 2005. Entrants to the challenge used a wide variety
of vehicle platforms, sensing techniques, and control methods. Princeton’s
entry to the Challenge, Prospect Eleven, was unique in that its only envi-
ronmental sensor was a stereo camera pair. This paper describes the stereo
vision techniques used by Prospect Eleven in the Grand Challenge, as well
as subsequent work in the field.

Grand Challenge teams used two types of sensors to avoid obstacles and
stay within road boundaries: LIDAR (Light Detection and Ranging), and
vision. LIDAR units tend to be very costly, as they have very limited appli-
cations. Furthermore, most LIDARs only give one line of the scene at a time,
so range measurements must be integrated over time to obtain a complete
picture of the terrain ahead. This process requires delicate sensor stabiliza-
tion, and further increases the cost of using LIDAR. In keeping with the
Princeton team philosophy of simplicity, LIDAR was rejected as being too
complex and too expensive. The obvious alternative was vision. A monoc-
ular system was developed by Michael Pasqual 05, which optical flow and
color information to identify obstales. To compute the location of obstacles
in the scene, the image was transformed into the orthographic plane, and
pixels corresponding to obstacles were located relative to the vehicle’s posi-



tion. Conceptually, this system supposes that the ground ahead is a plane
parallel to the motion of the car, and everything in the image is painted
on the plane. As natural scenes do not always meet this assumption, the
system was not very robust at ranging obstacles. Additionally, optical flow
is plagued with difficulties, particularly in very homogenous scenes (such as
much of the desert), or when the vehicle goes so quickly as to make a pixel
location in one image correspond to an entirely different object in the next
image. A stereo pair, in which two cameras are mounted a fixed distance
apart, was used instead. Though not without its limitations, this technique
was adequate to qualify Prospect Eleven for the Grand Challenge, and even
scale several mountain passes at night [6].

Section 1 of this paper discusses the technique of Stereo Vision. Section
2 discusses the particular problem of obstacle detection for the Grand Chal-
lenge, and proposes a simple algorithm to accomplish the task. Section 3
proposes an algorithm for tracking obstacles in the time domain. Finally,
Section 4 discusses work to extend the range of stereo vision, and considers
future work in the field.



Chapter 1

Stereo Vision

Stereo vision uses two cameras separated by a known distances to obtain
a map of the terrain ahead. In particular, an image is captured from each
camera simultaneously. Then, features in one image are matched to features
in the other. Finally, using these matches and information about the relative
position of the two cameras, the position of each feature relative to the camera
is computed. This section provides an overview of this process, drawing
heavily from [11].

1.1 (eneral Principles

Figure 1.1 illustrates the governing principle of stereo vision. The point P
is some point in the scene. C; and C) are the centers of projection for the
left and right camera, and I; and I, show the cameras’ respective image
planes. Given only the position of P in the image plane the left camera, P
could fall along any point on the ray from C; to P. But by determining the
position of P in the image plane of the right camera, the position of P can be
triangulated by determining the point of intersection of the two rays. More
formally, let b be the distance between C; and C,., p; and p, be the location
of P in the image plane of the left and right camera, f be the focal length,
and Z be the distance from the baseline to P. By similar triangles, we have

Z—f Z



Figure 1.1: Principle of Stereo Vision

This equation gives an expression for 7

fo
Dr —Di

7 —

(1.2)

Except the quantity p, — p;, all terms are known properties of the system.
As such, p, — p;, termed the disparity, is all that must be computed to
determine the position of features in the scene. The next section examines
an algorithm to compute disparity.

1.2 Disparity computation

If possible, it is desirable to compute this disparity for every pixel in the
image. Algorithm 1 accomplishes this. For each pixel in the left image, the
algorithm attempts to minimize a matching cost function ¢ over the right
image subject to the constraints of camera geometry.

Though many cost functions may be adequate, an efficient and effective
one to sum the squared difference over some 2k+ 122k +1 window. Naturally,
the window is centered around the pixels which are being considered for a

8



Algorithm 1 Stereo Matching Algorithm

1: Let I(r,c) be the pixel value for the pixel in row r, column ¢ of image [
2: Let D(r,c) map each pixel [;(r, c) to its corresponding feature in I,

3: Let ¢(ry, ¢, 7, c.) be a function which computes the cost of matching
LIi(r, ¢) to 1.(ry, cp)

4: for each pixel 1, ¢ in I; do

5.  for each possible match r,,c,, in I, do

6: Compute @(ry, ¢, 1y, ¢;)

7. end for

8:  Let D(r,¢) be the choice of r,, ¢, which yields the minimum value of

¢(ri, 1,7y, Cr)
9: end for

match. Larger windows tend to produce superior results, as more information
is available in matching, but it also slows computation. The formula used is

ko k
d(ri, e, reyCp) = Z Z (L(r +u, ¢ +v) — L(r, —u,c. +0))*  (1.3)

u=—kv=—Fk

Significant efficiency gains may be realized by limiting the set of possible
matches considered in steps 5-7. Figure 1.2 shows a point P’s projection
onto the camera planes of the left and right cameras, m; and 7,. As noted
before, given the location of a point P in camera plane of the left camera, its
position in the world is limited to the ray C’;Pl, starting at C in the direction
of p;. So to find P in the right image plane, only the projection of C, P, onto
the image plane of the right camera need be considered.

To even further simplify the detection algorithm, right image may be
rectified so that each ray from the left fixation point is project into a row
in the right image plane. In effect, the algorithm need only search a single
row of the right image for each match in the left. Moreover, if it can be
assumed that objects will be at a certain minimum range, the number of
columns searched can also be capped. This rectification is quite simply in
the case of two cameras parallel to one another, as was the case in Prospect
Eleven. Indeed, if lenses were ideal, no correction would be necessary at all.
However, as a result of radial distortion and subtle imperfections in the lens,
slight rectification is performed before matching. Once matching is performed
for each pixel, a disparity map may be generated. A disparity map, denoted

9



Figure 1.2: Projection of C’fPl, the ray from the left center of projection to
the image plane, onto the right image plane .,

D(r,c) in the algorithm, is simply an image in which the intensity value of
a pixel is the disparity of that pixel with respect to a stereo pair. Figure 1.3
shows a stereo image pair, and the corresponding disparity map.

1.3 Implementation and Results

In order to maximize development time, a commercial stereo camera was pur-
chased. A Point Grey Research (Vancouver, Canada) Bumblebee captures
simultaneous images from two black and white CCDs. The baseline separa-
tion is 12 cm. The included libraries implement Algorithm 1. Additionally,
the libraries perform validation on the pixels in order to determine if a dis-
parity value is likely to be accurate. In particular, the algorithm considers
the amount of variation in a window, and if the variation is very low, the
match is declared unreliable. Invalidated pixels are displayed as black in all
figures in this paper.

Several strategies were found to be effective in improving the number
of accurate and validated matches—particularly in poor lighting conditions.

10



Figure 1.3: The left image, right image, and disparity map for a natural
scene

Red photographic filters mounted in front of each lens were used to increase
contrast by blocking blue light and reducing UV haze, mitigating problems
such as CCD “bleeding” on bright days and boosting the brightness of the
ground, the area of interest in each frame. Results were further improved by
custom camera gain control which was designed to optimize the exposure in
the ground plane at the expense of the upper half of the frame. Given the
current gain GG, the average intensity sampled over some region of interest C,
and the desired intensity value T, the new gain G’ is:

G'=G+k(C-T) (1.4)

where k is simply a scaling constant. Typically, T is selected to be rather
low, in the range of 80-100, and C' is calculated by sampling approximately
1% of the pixels in the lower-central portion of the image.

Even under perfect lighting conditions, there remain many limitations
to stereo vision. Certainly, range is a limiting factor in many applications.
In practice, 20m is the maximum reliable range. Figure 1.4 gives a plot of
range at various disparities. At the minimum reliable disparity value of 3,
the range is 20m. Figure 1.4 illustrates another serious limitation of stereo
vision. As the difference in range can be very large for neighboring disparity
values, and disparity falls only on integer values, there is significant error
caused by quantization. Even worse, if disparity value is off even by one, a
tremendous error in ranging can result. Figure 1.5 illustrates the error caused
by quantization, assuming perfect disparity values. It clearly illustrates that
error rises drastically as range increases.

Unfortunately, there is nothing to be done about the intrinsic errors of
stereo vision but to design around these sources of error. The next chapter
presents an obstacle detection algorithm which is well-suited to the errors of

11
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stereo vision, and to the Grand Challenge.
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Chapter 2

Obstacle Detection

Given the ability to acquire depth maps as a function of several parameters,
this chapter presents an algorithm used to detect obstacles in the depth map.
The choice of algorithm is informed by the errors intrinsic to stereo vision, as
discussed in the previous chapter. In particular, the algorithm presented is
designed to be as fast as possible, such that many possible measurements of
an obstacle’s position may be obtained. These measurements are combined
to obtain a superior measure of position, as discussed in the next chapter.

Figure 2.1 gives the coordinate system which shall be used for the re-
mainder of this paper. The origin is at the camera, the heading of the car
is the positive y axis, to the right of the camera is the positive x axis, and
above the camera is the positive 2z axis.

2.1 Previous work

Obstacle detection algorithms may be divided into two sets, those that find
obstacles in the disparity map (see [2], [4], [5], and those that first transform
the disparity map into a point cloud and then work in 3-space (e.g, [13], [10]).

Working on the disparity map allows algorithms to work with data in
a form which most closely represents the way it is acquired by the sensor.
Moreover, as only 2 dimensions are used, working on the disparity map is
typically less expensive in terms of storage and computation. The primary
advantage of the latter approach is that it need not make assumptions about
the position of the camera relative to a ground plane, whereas most disparity
map approaches must. However, as Prospect Eleven has the camera mounted

14



Figure 2.1: Coordinate System

securely to the hood, it is safe to assume that the ground plane is roughly
perpendicular to the camera plane.

The approach of [2] is to simply assume that a ground plane extends out
in front of the car, and mark as an obstacle any object which does not fall
in that plane. The plane in this case takes the form

z=c (2.1)

for some constant c.

Similarly, [13] relies on the ground plane assumption, but dynamically
computes the ground plane based on the current disparity map. In this case,
the ground plane takes the form

ar +by +cz+d=0 (2.2)

for some constants, a, b, ¢, and d.

Other approaches to not look at global features of the image, but instead
look only at small regions. For instance, [8] calculates the radial slope of each
pixel, and marks as obstacles those pixels which are above some threshold.
Similarly, [5] limits the maximum slope relative to the ground plane. Both
approaches are advantageous in that each pixel need only be analyzed with
respect to its neighbors as opposed to in comparison to the entire image.
Simplifying even further, [3] simply searches for sufficiently large regions
which are at sufficiently similar depth values. The approach of [3] reduces to

15



that of [5] and [8] if it is assumed that the ground plane extends in front of
the camera, and that the camera plane is perpendicular to it.

The approach of this paper combines the global ground plane height
thresholding techniques of [13] and [2] with the slope thresholding techniques
of [8], [5] and [3]. The two metrics can be integrated in a simple and elegant
manner.

2.2 Finding the ground plane

As the Grand Challenge course was graded, it is reasonable to assume there
exists a flat, traversable region in front of the vehicle. However, it is not
necessarily the case that this region will be entirely flat. It is both simpler
and more accurate to simply assume that in each row of a disparity map, the
disparity value will be constant for pixels which correspond to traversable
terrain. Expressed mathematically, we have that the height of the ground
‘plane’ is a function of y.

2 = f(y) (2.3)
Obviously, this implies that

0z
e 0 (2.4)
which is precisely the constraint suggested.

It now only remains to compute f(y). The method suggested in this paper
is to compute the row-wise median in the disparity image. This method
assumes that at least 50% of each row is not an obstacle; experimentation
revealed the assumption to be reasonable in most cases. The failure modes of
this assumption is discussed later in this chapter. An additional advantage
of this method is that as a result of the quantized nature of disparity values,
the median may be computed in linear time using Algorithm 2, based on
BINSORT, from [7].

2.3 Implementation and results

Were range data perfect, a logical measure of slope in the scene would to
simply measure the rate of change of the disparity values. Moreover, it is

16



Algorithm 2 Linear-Time Median Calculation

1: Let D(r,c) be the disparity value of row r, column ¢ in disparity map D
2: Let M(r) be the median disparity value in row r
3: for each row r do

4:  Let Count(i) be the number of disparity values in row r which are
equal to ¢

5. Let Count(i) = 0 for all ¢

6:  for each pixel ¢ in row r do

7 Increment Count(D(r,c))

8: end for

9:  Let DisparityValue = 1 be the disparity value considered in the cur-
rent iteration of the following for loop

10:  Let Accumulation = 0 be the number of pixels with value <
DisparityV alue

11:  while Acculation < Half the number of columns in row r do

12: Add Count(DisparityValue) to Accumulation

13: Increment DisparityV alue

14:  end while

15:  Let M (r) be DisparityValue — 1

16: end for

17



assumed the ground plane is perpendicular to the xy axis, so high slope with
respect to the ground plane is equivalent to very low slope in disparity over
an interval of rows. Additionally, quantization renders measures like variance
meaningless. As a result of quantization, regions of high slope with respect
to the ground plane appear as long contiguous intervals of rows all at the
same disparity value. A natural algorithm, then, is to simply search each
column for an interval of contiguous rows at the same disparity value. If the
interval is longer than some threshold, [, the span is declared an obstacle.
The median ground plane criterion may be incorporated by varying the value
of [ in according to the extent to which the top pixel in the span is above the
median in its row. More formally, let D be a disparity map, and M(r) be
the median value in row r in D. Let 74, and 744, bound an interval of rows,
such that in column ¢, D(r,c) is some d for all r,, < 7 < 75,. The length of
the run is clearly r, —r;+ 1. If r, —r; 4+ 1 > £, then the span of rows 7., to
Thigh i column c is considered an obstacle. The parameter ¢ is a function of
D(riow,c) and M (r). A reasonable such function is

8  for disparity > medianDisparity + 2
U(disparity, medianDisparity) = § 20 for disparity > medianDisparity + 1
35 otherwise
(2.5)
Algorithm 3 gives a linear-time implementation of this criterion. For
each span, a confidence measure is computed. In this implementation, the
confidence measure c is determined by the number of pixels in the obstacle
n, the number of pixels which are validated m, and the standard deviation
of disparity values in the interval s. In particular,

c=— (2.6)

Figure 2.2 shows the output of the algorithm on one image, and Figure
2.3 shows the algorithm’s performance on the highlighted column.

The time-complexity of the algorithm is linear. Each pixel need only be
examined once. Figure 2.3 shows the computation times of 193 images at
640x480 resolution versus the proportion of pixels in the image which were
identified as obstacles.

Once obstacle pixels are detected, bounding boxes are constructed around
each connected component of obstacle pixels. A box is classified as an obsta-

18



Algorithm 3 Obstacle Detection in a Disparity Map

1: Let D(r,c) be the disparity value of row 7, column ¢ in disparity map D

2: Let M (r) be the median disparity value in row r

3: Let O(r,c) be 1if r, ¢ is an obstacle in D, 0 otherwise

4: for each column ¢ do

5. Let State be NOT IN OBSTACLE

6:  Let activeDisparity be -1
7. Let runLength =0
8:
9

for each row r, starting at the top do
if State is NOT IN OBSTACLE then

10: if D(r,c) = activeDisparity then
11: Increment runLength

12: else

13: Let runLength be 0

14: Let activeDisparity be D(r,c)
15: end if

16: Let minLength = ¢(D(r,c), M(r))
17: if runLength > minLength then
18: Let State be IN 0BSTACLE

19: Let O(r — runLength, ¢) through O(r, ¢) be marked 1
20: end if

21: end if

22: if State is IN OBSTACLE then

23: if D(r,c) < M(r) then

24: Let State be NOT IN OBSTACLE
25: else

26: Let O(r,c) =1

27: end if

28: end if

29:  end for

30: end for

19



Figure 2.2: (a) Sample scene image, with detected obstacle pixels highlighted
and sample column outlined, as analyzed in Figure 4 (b) The corresponding
disparity map.

cle if its mean confidence measure exceeds a threshold. A reasonable value
for this threshold is 15. Table 2.1 gives the performance of this algorithm
on several obstacles at various distances. A v indicates successful detection,
and an X indicates that the obstacle was not detected.

Object (height) / Distance |4.5| 6 | 7.5 9 [10.5| 12| 13.5 |15 | 16.5
Short cinderblock (19.5cm) | v |V | vV | X | X | X | X | X | X
Upright cinderblock (40 cm) | v |V | vV |V | vV | X | X | X | X
Shelves (65 cm) I\ N X
Trash can (69 cm) I\ N Y X

Table 2.1: Detection of objects at various ranges (in m)

As can be seen, the range at which short obstacles can be reliably detected
is quite limited. Fortunately the primary function of obstacle detection dur-
ing the Grand Challenge was to detect graded berms on either side of the
course. Data recorded during the Grand Challenge indicates that Prospect
Eleven was able to do so at ranges of approximately 8 m, which was adequate
for navigation during the race. The limited detection distance for small but
dangerous obstacles capped the vehicle’s maximum speed.

There are several significant limitations to the algorithm presented. For
instance, it is sometimes the case that traversable features have high slopes.
Figure 2.3 shows one such image. In practice, such steep hills are rarely
encountered, so this limitation was not debilitating.

Another significant limitation is that though actual obstacles are reliably

20
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Figure 2.3: Disparity values and obstacle detection in the highlighted column
of Figure 3.a. The shaded region is detected as an obstacle.

detected, false positives remains a problem. Figure 2.3 shows such a case.
Though careful parameter tuning reduces the frequency of false positive,
further reducing the sensitivity of the system could result in not detecting
dangerous obstacles. Though the frequency of false positives depends greatly
on the terrain encountered, experience suggests that bumpy terrain tends to
produce them with greater frequency than does smooth terrain.

A further limitation is the assumption made about a ground plane. When
it does not hold that g—; is low, such as a banked curve, the higher part of
the curve could be detected as on obstacle. This case was not encountered
with frequency during the Grand Challenge.

Perhaps a surprising capability of the system was nigh‘t operation. Beer
Bottle Pass was traversed at night, the only light from the headlights of the
vehicle. It has even been suggested that night operation is superior for stereo
vision, because the close proximity of lights generates very many shadows.
These shadows form excellent edges, and improve feature matching.
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Figure 2.5: False positive: hill
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Figure 2.6: False positive: noise in sky
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Chapter 3

Filtering in the Time Domain

Detected obstacles are tracked in the time domain to improve accuracy in
positioning and limit false positives. When a new image is processed, the
list of obstacles from that image is compared to the list of currently tracked
obstacles. Each new obstacle is matched to the closest existing one, or de-
clared a new obstacle if no suitable match exists. A confidence measure is
maintained for each obstacle, and a Kalman filter maintains the estimate of
the obstacle’s location.

3.1 Matching obstacles

Matching obstacles is accomplished in a simple manner, and is described in
Algorithm 4. Let C' be the set of currently tracked obstacles and N the set
of obstacles detected in the current frame. Further, let phi(n,c) be the cost
of matching some n € N to some ¢ € C. Then for each obstacle n € N,
Algorithm 4 minimizes ¢(n,c) over all ¢ € C. If the ¢(n,c) is below some
threshold maxMatchingCost, then n and ¢ are matched; otherwise, n is
added to a list of new obstacles.

At a minimum, the cost matching function ¢(n,c) should consider the
distance between n and c. It makes little sense to match two obstacles who
position is very far away. The cost function used by Prospect Eleven is
slightly more complex, however. The confidence of ¢ is also considered, as it
is preferable to match a new obstacle to an obstacle which is likely to exist.
Let d be the distance between ¢ and n, and let conf. be the confidence of
obstacle c. Then the cost function used is

24



Algorithm 4 Obstacle Matching Algorithm

1

11:
12:
13:
14:
15:
16:
17:
18:
19:

e

: Let C be the set of currently tracked obstacles
Let N be the set of obstacles detected in the current frame
Let M (c) be the set of obstacles in N matched to ¢ € C
Let D be the set of obstacles first detected in this frame
Let maxMatchingCost be a constant, such that two obstacles can only
be matched if their matching cost is less than max M atchingCost
Let phi(n,c) be the cost of matching obstacle n € N to obstacle ¢ € C
for each n € N do
Let minC be the minimum-cost match for n.
for each ¢ € C' do
if ¢(n,c) < ¢(n,minC) then
Let minC be ¢
end if
end for
if ¢(n, minC') < CmazMatchingcost then
Add n to M (minC')
else
Add n to D
end if
end for
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d3

¢(n’ C) - Confc
At termination of Algorithm 4, M (c) gives a set of obstacles in the current
frame which correspond to ¢, which is currently being tracked. If for some
¢, M(c) = 0, then ¢ was not detected in the current frame. Then the new

confidence of ¢, conf!, is simply

(3.1)

conf. = conf, - atrophyRate (3.2)

where atrophyRate € [0,1] is a constant. On Prospect Eleven, atrophyRate =
5.

Obstacles ¢ € C for which M(c) # () are updated. If |[M(c)| > 1, the
obstacles are combined by constructing a single bounding obstacle. Now all
that remains is to update each the position and confidence of ¢. Updating
the position of ¢ is done by a Kalman filter, discussed in the next section.
However, the new confidence is given by

max(con fe, confy,)

confl = (3.3)

atrophyRate

3.2 Maintaining Obstacle Position

The position of each obstacle is maintained using a Kalman Filter. Kalman
filters are a well-studied technique for tracking data. For linear systems with
uniform random Gaussian noise, it gives the optimal estimate of a quantity
given past measurements. This section gives an overview of Kalman filtering
following [12], in particular its application to obstacle localization.

In this case, the Kalman filter estimates the value x € %3, where z is the
position of an obstacle relative to the car expressed in homogenous coordi-
nates. Homogenous coordinates allow translation to be performed as a linear
operation. In particular, homogenous coordinates represent a position x,y
with the values xj, yp, c. Standard coordinates relate to homogenous coordi-
nates by the equations x = z,/c, and y = yp,/c. As is shown later, it is easy
to represent translation as a linear operation by homogenous coordinates.

Further, we suppose that the value of x at state k, xy, is governed by the
equation

T = ACL’k_l + Wg—1 (34)
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The matrix A relates the state at one time step to the state in time
step k. In this case, A simply takes into account the movement of the car
since the previous time step. The matrix w represents the noise associated
with process updates — i.e., the noise associated with the car’s own state
estimation. It is supposed that w follows a uniform Gaussian distribution
centered at the origin with covariance matrix Q).

It is further supposed that measurement of zj, 2z, is governed by the
equation

2k = T + Vg (35)

Similar to w, v is the measurement error. It is supposed that v follows a
uniform Gaussian distribution centered at the origin with covariance matrix
R.

The Kalman filter maintains the optimal measure not only of z, but also
of the covariance of x, P. In particular, given an update in state estimation,
a translation matrix A is computed to reflect the rotation and translation of
the vehicle. Given a translation vector of (x,y), the appropriate matrix A,
is given by

A= (3.6)

8 O
<L~ O
_— o O

The rotational component, caused by changes in the car’s heading, is
similarly computed. Given a heading change of d degrees, the appropriate
transformation A, is given by

cos(d) sin(d) 0
A, = | —sin(d) cos(d) 0 (3.7)
0 0 1

The final transform as a result of the car’s movement, A, is simply

And thus the update equations are

T — ALL’k_l (39)
P.=P._1+Q (310)
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where () is determined based on the error in state estimation.

Computing the update equations for new measurements is much more in-
volved, and full derivations are available in [12]. This paper provides only the
final equations, and the aspects which are particular to this implementation.

Obtaining a new estimate of the obstacle’s state requires only knowledge
of the obstacle’s current state xp_;, the covariance matrix representing the
error in the obstacle’s current state P,_;, the new measurement of the ob-
stacle’s state z;, and finally the covariance matrix Ry representing the error
distribution in z. The covariance matrix Ry is computed by supposing that
the error in localization is caused entirely be inaccurate and quantized dispar-
ity measurements, and that the error distribution for disparity measurement
is independent of the disparity value itself. Differentiating Equation 1.2, this
yields that the error is inversely proportional to the square of the disparity
d.

With this information, a measurement update may be performed. The
Kalman gain K is first computed. Then the Kalman gain is used to obtain
the new state estimate zj, and the new error estimate P.

K= P 1(P_1 +R)! (3.11)
Tp = Tp_1 + Kk(Zk - xk—l) (312)
P,=(I—Ky)Pes (3.13)

3.3 Results

Matching is effective in improving localization, particularly for obstacles at
ranges above 8 m. The measurement error for localization decreases quadrat-
ically as a function of range. Though ground-truth data is not available, a
direct approach to obstacles at randomized positions is simulated with a
wide variety of parameters. Figure 3 gives the mean precision of localization
at various ranges over 10,000 simulations. Values simulated include vehicle
speeds in the range 6 m/s to 13 m/s, minimum detection ranges between 1.5
m and 5 m, maximum detection ranges between 15 m and 20 m, detection
frequencies between 6 Hz and 10 Hz, and disparity calculations with unbiased
Gaussian error with o2 between 0.05 pixels and 0.5 pixels. The error model
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Figure 3.1: Error in localization versus range

assumes that error is caused entirely by miscalculation and quantization of
disparity values. The periodic behavior of the measurement error is a re-
sult of quantization: for ranges which correspond to nearly integer disparity
value, quantization causes very little error. Though there are certainly many
more sources of error than those modelled, and actual error is much greater,
the simulation demonstrates that tracking is effective at reducing error in
localization.
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Chapter 4

Monocular Techniques: A
Progress Report

One significant disadvantage of stereo vision is its limited range. To augment
the range of stereo, this section discusses the possibility of combining monoc-
ular techniques with stereo vision. Early results show that the technique has
many limitations.

4.1 Color matching

The simplest approach is color matching. Once a obstacle map is obtained,
it is easy to determine the distribution of intensity over the pixels marked as
obstacles, the pixels not marked as obstacles, and the scene as a whole. Using
these quantities and Bayes’ Law, it is simple to compute the probability that
a pixel is an obstacle, given its intensity. Unfortunately, this technique was
not effective. For one, the input data was not ideal, as the stereo system
used by Prospect Eleven records only black and white images. Moreover,
many obstacles appear very much like objects which are not obstacles —
a berm is made of the same dirt and sand that make up the road ahead.
Complicating matters even further, shadows in the scene make the color of
an obstacle unpredictable. Complete results of color matching are available
on the author’s website.
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4.2 Texture matching

Instead of looking at intensity values, texture metrics consider the way in
which intensity values change over some region. In particular, the image is
convolved with oriented filters in order to determine the orientation of the
surface. A vector is then computed based on the intensity of each orientation
in the image. An average vector for both obstacle pixels and non-obstacle
pixels is computed. To determine if a new pixel is an obstacle, it is projected
onto the vector for obstacle pixels and non-obstacle pixels, and the magnitude
of each projection is compared to a threshold. Again, results were extremely
disappointing and are available on the author’s website.

4.3 Motion estimation

As monocular techniques for image understanding seemed unfruitful, a new
area was investigated: motion estimation. During the Grand Challenge,
Prospect Eleven relied on a donated Applanix Position and Orientation Sys-
tem. Though GPS is helpful for general localization, it only operates at
1Hz and has significant errors. Another system is needed to estimate small
movements between GPS updates.

Fortunately, a great deal of research has been conducted on using inferring
motion from a set of images. The advantages to the approach are many;
cameras typically operate at high frequency relative to other sensors such as
GPS, and they are a consumer good so are very low cost. One of the most
promising approaches was developed by [9]. Using Scale Invariant Feature
Tracking, or SIFT, features in one image are matched to features in the
previous image. This matching gives a transform from one image to the
next. Because matches can sometimes be unreliable, a bundle adjustment
algorithm is employed in order to reject poor matches. The SIFT matching
algorithm appears to be very robust on images taken from Prospect Eleven’s
vision system, and ongoing work aims to integrate this technology into the
state estimation system of Prospect Eleven.
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Chapter 5

Conclusion

Perhaps the best lesson of the Grand Challenge was in the importance and
difficulty of defining the problem. The system presented in this paper is far
from state of the art — its strength and weakness is that it is specifically
suited for structured environments similar to those of the Grand Challenge.
Instead of focusing on the general problem of autonomous obstacle avoidance,
several assumptions were made about the environment ahead, and these as-
sumptions were exploited to design fast, simple and effective algorithms.
Moreover, understanding that there is tremendous error in the system mo-
tivated an algorithm for tracking obstacles in the time domain, greatly im-
proving accuracy. This system, also simple in nature, dramatically improved
results and made feasible what would otherwise have been impossible.

Several tremendous challenges remain. For instance, Prospect Eleven was
unable to detect a lake upon its return to the desert. It is not surprising that
it was unable to do so — the lake confused even the human drivers in the
car, and Prospect Eleven was not designed to detect lakes. However, this one
problem symbolizes the enormous complexity of autonomous navigation. In
no way could every possible case be considered in code; simplifications must
be made to make the problem tractable.

The challenges that remain ahead cover some of the most fundamental
problems of engineering: machine learning, adaptive systems, and high di-
mensional information processing. Though the challenges are enormous, so
too is the potential to revolutionize the world of transportation.
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