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1 Team Overview

The Princeton Autonomous Vehicle Engineering (PAVE) IGVC team consists of members of Princeton University’s
all-undergraduate semi-finalist DARPA Urban Challenge team and brings substantial experience with computer
vision and autonomous navigation. Our entry into the 2008 IGVC, Kratos, builds upon the systems in our prior
robots, Prospect Eleven [1] and Prospect Twelve [5]. Despite a one semester development cycle, Kratos possesses
the complete set of capabilities required to be competitive at the 2008 IGVC.

Our team consists of nine undergraduate students from several engineering and non-engineering departments.®
Because of our small team size and familiarity we felt that a flat organizational structure, as shown in Figure 1, would
be most effective. Team members were grouped by their area of expertise as hardware or software. The hardware
group is responsible for all physical aspects of the robot, including design, fabrication, sensor selection, electronics,
electrical wiring and computers. The design and implementation of these systems is discussed in Section 3. The
software group is responsible for algorithmic design and programming implementation. Primary tasks include sensor
processing, intelligent navigation schemes and robust feedback control systems. The software aspects of Kratos
are discussed in Section 4. To oversee these groups, one student was designated as team leader and one handled

accounting and logistics. Weekly team-wide meetings were held to set goals, establish tasks and track progress.
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Figure 1: Team Organization Diagram

2 Design Process

Our overall design process followed the steps outlined in Figure 2. In the initial phase, we analyzed the requirements
and restrictions for the project to create a set of desired design objectives. Given these design objectives, we
determined specific systems and features for Kratos, based on our own knowledge and expertise. These systems were
then modeled or simulated to the fullest extent possible using computer software. To minimize wasteful spending
and fruitless development time, the required hardware and software components were acquired only after successful
computer simulations. We could then fabricate and implement our design. Each system was tested individually, then
integrated and tested as a whole. If, at any stage, a system’s actual performance did not adequately meet its design
objective, a re-design was necessary. Systems that did meet their objectives were deployed, though we continue to

monitor them for deteriorating conditions.

IECO = Economics, ELE = Electrical Engineering, MAE = Mechanical and Aerospace Engineering, WWS = Woodrow Wilson School
of Public Policy and International Affairs
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Figure 2: Flowchart of Design Process

We analyzed the rules and requirements of the 2008 IGVC, as well as restrictions unique to our team, and

identified the following design objectives for Kratos.

1. Complete design, fabrication and testing phases 9. Know global and local position to <1m accuracy at
during one academic semester all times
2. $6000 budget for materials and components 10. Travel through environment to quickly achieve mis-

sion objectives

3. Meet size requirements as specified in competition ) o ]
rules 11. Dynamically re-plan based on changing information

4. Carry 20 1b payload 12. Contain on-board power for at least 6 minutes of

continuous operation

5. Observe maximum speed of 5 mph over flat grass P

6. Scale a 15% incline 13. RJ-45 interface for JAUS interoperability

7. Detect and follow white and yellow lane markings 14. Substantial computing power to process all sensor
on grass data and perform decision making

8. Detect and avoid trash-can sized obstacles of vari-  15. Programming interface that supports expedited de-
ous colors ployment, data collection and implementation

Initial examination of objectives 1 and 2 led us to our primary guiding principle: simplicity. Our previous
experience with robotics competitions has taught us that reliability and testing are vital for success. The primary way
to achieve this is through simple designs: complex mechanisms contain more failure points and complex algorithms
are hard to debug. Throughout this project, we sought to keep our designs “As simple as possible, but no simpler”.?
In doing so, we not only decrease our implementation time, but expedite debugging and testing. All of the design
decisions discussed herein are assumed to have considered design objectives 1 and 2 foremost, under the premise of
simplicity.

Objectives 3 - 6 are mechanical design requirements and are addressed in Section 3.2. Objectives 12 - 15 are
electrical and computing requirements and are addressed in Sections 3.5 and 3.6. Objectives 7 - 9 are sensing
requirements and are addressed in Sections 3.7 and 4.3. Objectives 10 - 11 are software requirements and are

addressed in Section 4.

3 Hardware

Kratos has a width of 32 inches, a length of 47 inches, a height of 58 and weighs 205 pounds without payload. Kratos
is based on a three wheel chassis, which is stable in any orientation on sloped or uneven terrain. Two fixed, powered
wheels result in a zero turning radius enabling maximum mobility and holonomic path planning. The 12.5” drive
wheels and an 8" caster provide roughly 5” of ground clearance. On top of the chassis is the sensor tower, which
holds navigation and obstacle detection sensors as well as the required emergency-stop button. A cavity beneath the
sensor tower supports and secures the payload, fulfilling design objective 4.

In keeping with our design process, the entire robot was modeled with Autodesk Inventor 2008 CAD software
before any construction began. Inventor is a powerful CAD tool that allows for rapid component modeling and
assembly. It also tracks mass data for each component so the overall weight, center of mass and moments of inertia

of the robot were known before fabrication. As can be seen from Figure 3, the fabricated robot bears a close

2quote by Albert Einstein



(a) CAD Model
Figure 3: Visualizations of Kratos

(b) Real-World

The total team cost stayed within budget, thereby meeting design objective 2.

resemblance with the original CAD design. An overall parts list of components used on Kratos is shown in Table 1.

Item Actual Cost | Team Cost
Hemisphere GPS $1500 $0
Point Grey Bumblebee2 stereo camera | $1895 $1895
Honeywell HMR3000 digital compass $850 $0

US Digital E6 rotary encoders $500 $500
Drive motors $170 $170
Motor controllers $460 $460
BaneBots gearboxes $300 $300
Drivetrain components $300 $300
Raw material for chassis $600 $600
Misc. hardware $450 $450
Labjack Data acquisition card $500 $0

2x Computers $1800 $400
3x Batteries $215 $215
Battery charger $185 $185
Ethernet routers and switch $75 $45
Total: $9800 $5520

Table 1: List of costs for building Kratos

3.1 Hardware Innovation

Our time and budget constraints prevented us from exploring innovation in mechanical design. Our guiding principle
of simplicity further discouraged us from attempting to fabricate complex mechanisms. We chose to maintain simple
mechanics so that we could focus on our software development. That said, there are several innovative aspects of
our hardware implementation that are worth noting.

We chose to use the 80/20(© framing system to construct the entirety of Kratos’s chassis (Section 3.3), which
allows for modularity and adaptivity in our design. For example, at one point during our testing phase we decided
to switch to larger wheels. Rather than fabricate an entirely new chassis, we were able to extend the existing one
in a single day. In the future, Kratos will remain on-campus as a functional robot test platform and it will be very
easy for other students to mount additional sensors and mechanisms for their own research purposes.

We believe that our sensor suite (Section 3.7) is innovative and possibly unique among IGVC participants. Our use

of a single stereo camera for detecting both lanes and obstacles is simple solution that is also extremely advantageous.



In this configuration, lane and obstacle detection are both performed in identical reference frames and require no
transformations in software to merge data from them. Furthermore, our detection routines are set up so as to assist
each other. For example, if a pixel is identified as an obstacle, it can be ignored during the search for lane markings.

Because stereo vision is computer processor intensive, Kratos requires two computers (Section 3.6). Our computers
were custom built in an innovative way so as to take full advantage of their capabilities. Both machines have identical
internal hardware and share spare parts. Both computers are built from the same drive image and data from each
computer is backed up on the other. We can also easily perform hardware upgrades, such as faster processors or
more RAM at any point, should we find it necessary. Each of our code modules is deployed as an individual program,
which allows the operating system to perform process-level switching, taking the best advantage of the multi-core

processors.

3.2 Mechanical Design

To meet design objectives 5 and 6 we performed a comprehensive analysis of power requirements for motor selection,
carefully factoring real-world conditions. Gearbox efficiency was assumed to be 90% in each of three reduction
stages. Coeflicients of rolling friction over grass and wood were taken to be .2 and .1, repsectively, as estimated from
published data and confirmed experimentally. In addition, motor power curves were adjusted for increased resistance.
Three situations were identified as distinctive cases of robot motion. Their power requirements are analyzed in Table

2. Case 3 was found to be the most demanding and was considered first during motor analysis.

Case Net Force | Power Required | Motor Power | Power per side
1: Full speed forward on grass | 196.2 438.5 601.5 300.8
2: Turning in place on grass 130.8 292.3 401.0 401.1
3: Driving up a 10° incline 268.4 600.0 823.0 411.5

Table 2: Power requirements for robot motion. Speed in (m/s), force in (N), power in (W). Cases 1 and 3 assume
power is split evenly between the each side of the robot, whereas case 2 assumes only one motor is operating.

Motor choices were limited by our decision to use only 12V power. After examining several options, we decided
to use two CIM motors on each side of the robot, controlled by Victor884 speed controllers made by IFIRobotics.
These motors were selected due to their popularity in the FIRST Robotics Competition as well as the availability of
many aftermarket gearboxes and parts for them. This configuration produces a maximum of 440W per side, which
is enough power to meet all of the cases outlined in Table 2.

To determine final gearbox ratios and wheel diameters, a full analysis of the motor power curve was undertaken.

Key values for the 2-motor setup were taken from published data[2] and are shown below:

V.. = 12V (nominal voltage)

I, = 266 A (stall current)

7s = 4.84 N-m (stall torque)

wg = 556.7rad/s (no-load speed)
Iy = 54A (no-load current)

Additional motor parameters were calculated and a numerical simulation of the motor power curve was conducted
using the following formulas; the results are shown in Figure 4.

We narrowed the design region on the motor power curve by considering two key points, peak efficiency and peak
available power. The Victor884 speed controllers are only rated to 40A, limiting our power to 80A per side. This
reduced the peak available motor power from 440W to 433W. As can be seen in Figure 4, the motors produce 212W
at their peak efficiency of 60%. We predicted that we will be operating at or near case 1 about 50% of the time, at
or near case 2 45% of the time, and in case 3 only 5%. We therefore aimed to have cases 1 and 2 fall near the peak

efficiency of the motors, allowing case 3 to fall closer to peak allowable power.
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Figure 4: Motor Power Curve for 2x CIM Motor

We selected 12.5” diameter wheels and a 40:1 gear ratio, consisting of a 12:1 planetary gearbox and a 10:3 chain
drive. This configuration provides ample power and quick acceleration in all of the design cases, with substantial
safety margins for known failure points such as gearbox torque limitations, working chain load and current limits.
Since transient current values can be much higher, we wanted to have a large safety margin with respect to the
current limit, to ensure that the circuit breakers would not trip. The drawback of this setup is that our max speed
in all cases was reduced from 5mph to at or below 4 mph. However, we considered it better to relax our original

design requirements than operate with minimal safety margins.

Case | Speed | Total Power | Motor Power | Current | Efficiency
1: 1.81 177.3 243.2 33.9 59.8
2: 1.69 220.8 302.8 43.4 58.1
3: 1.67 224.9 308.4 44.4 57.8

Table 3: Predicted top speed and power usage for robot motion. Power and current values are for one side only.
Speed in (m/s), Power in (W), Current in (A), Efficiency in (%)

A numerical simulation was used to predict our top speed and acceleration. A summary of our predicted perfor-
mance is shown in Table 3, while a predicted speed response is graphed shown in Figure 5a. These results are very
closely aligned with actual speed data taken from the robot, shown in Figure 5b. Both of these graphs demonstrate
that our robot is hardware-limited to adhere to the 5mph speed limit set forth in the competition rules and design

objective 5.
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3.3 Fabrication and Assembly

Since Kratos was fully designed using Autodesk Inventor CAD software, it could be constructed easily and quickly.
Parts were either converted to 2D engineering drawings to aid manual fabrication or exported for CNC manufacturing.

We chose to use the 80/20(© framing system as opposed to aluminum or steel bars to construct the entirety of
Kratos’ chassis. These custom-extruded aluminum bars are stronger than square-tube extruded aluminum of the
same size and cost less, although 80/20() requires proprietary fasteners which add to the total cost. Our cost-benefit
analysis showed that, due to its strength and ease of assembly, 80/20(©) best met design objectives 1 and 2.

The primary chassis members are held together by custom machined aluminum plates, while 2 inch aluminum
L-brackets provide corner reinforcement in areas of high stress. A platform of 1/4” polycarbonate rests on the
bottom of the chassis and supports all the components in Kratos. Polyethylene sheets line the perimeter of the

robot, protecting sensitive internal equipment from external hazards.

3.4 Testing and Redesign

We encountered several problems during our initial testing phase that required us to redesign parts of the robot.
Our initial design had the two drive wheels in the front with a trailing caster. Early driving tests of Kratos revealed
undesirable oversteer properties of this orientation, which caused the robot to spin out in a turn. To fix this, we
re-oriented the forward direction of the robot. The tower was reversed so the camera was aimed correctly and wheel
rotation inversions were handled in software.

We purchased off-the-shelf gearboxes from a third-party supplier, BaneBots Inc. These gearboxes were designed
to interface easily with the motors we selected and expedited the fabrication and assembly process of our robot
drivetrain. However, these gearboxes had a maximum torque limitation, beyond which the carrier plates for the
planetary geartrains would deform or break. This failure point necessitated a major re-design of our drivetrain. We
switched to a smaller diameter wheel to minimize torque applied to the gearbox from the wheels by Kratos’ inertial
motion. In addition we abandoned our initial decision to directly drive the wheels and switched to a chain drive
system. Having the final gear reduction stage be an external chain drive significantly reduced the torque applied to

the gearbox and successfully avoided the failure point.

3.5 Electrical Design

Design objective 12 represents the longest running time of the challenges at the IGVC. However, we felt it was

extremely important to have longer running time to facilitate extended testing. We aimed to have enough on-board



power for one hour of continuous operation with at least three hours on standby. Power requirements for all electrical

components were analyzed as shown in Table 4. With our nominal 12V electrical system, this translates to 82A under

Average Component Power Draw (W) | Peak Idle
Driving Straight (50% duty cycle) 243W ow
Turning (45% duty cycle) 273W oW
Climbing (5% duty cycle) 31W oW

Drivetrain Weighted Average 547TW ow
GPS 2W 2W
Compass 0.5W 0.5W
Bumblebee2 Camera w/computer
Labjack DAQ 2.5W 2.5W
Encoders w/Labjack

Sensors Total 5W oW

Computers 400W 200W

Routers 15W 15W

Gigabit Switch 6W 6W

Misc. Electronics 10W 10W

Total: 983W 236W

Table 4: Analysis of Power Requirements
full load and 20A at idle. We selected three Tempest TD33-12 Deep-cycle batteries with a rating of 33A-hr, giving
us a total of 99A-hr at full charge. Kratos can therefore last under its own power for over one hour of continuous
operation. Furthermore, Kratos can remain powered at idle for over 5 hours. A 12V battery charger is located
on-board, so Kratos can easily be tested for extended lengths of time in any location with access to a 120V AC power

source.

3.6 Electronics and Computing

A Labjack UE9 data acquisition unit allows for digital and analog input/output between our electronics and comput-
ers. Though the UE9 can communicate over both USB and Ethernet, Kratos utilizes the Ethernet connection so that
either computer can access data at any time. The UE9 is used by Kratos to generate PWM signals that command
the Victor884 motor controllers. It also performs 4x quadrature counting to track the position of the incremental
encoders on each axle. The UE9 has several digital I/O, which are used on Kratos to control the warning lights and
detect the E-Stop status.

Given the computational intensity of some of the algorithms discussed in Section 4, we determined that Kratos
needed two computers to meet design objective 14. One computer is devoted to vision processing, while the other
handles navigation and low-level control. Both computes are configured identically, with Intel Core2Duo processors,
2GB of RAM and 200GB hard drives. Each computer is mounted in a low-profile case. The cases are sandwiched
together and secured to the chassis with shock-isolating feet. The computers were switched over to 12VDC power
supplies rated at 200W, increasing power efficiency. Kratos’ network consists of a gigabit Ethernet switch, 802.11g
wireless client and a 802.11g wireless access point. Collectively, these devices enable high speed data transfer between
the two computers and the Labjack, Internet access through the campus network to ease field testing, and wireless
access to Kratos’ computers for debugging purposes. The internal network also fulfills design objective 13 by providing

and Ethernet connection between the computers and the external JAUS box.

3.7 Sensors

The sole environmental sensor on Kratos is a Point Grey Bumblebee2 color stereo camera. Though design objective

7 necessitates the use of a color camera, design objective 8 can be met with many different sensor types. We chose



to use the same sensor to meet both of these objectives due to our team’s previous experience working with stereo
vision. The Bumblebee2 is mounted near the top of the sensor tower, with a 12° downward pitch. The Bumblebee2
has a horizontal FOV of 70° and a effective range of 18 meters. The minimum detection distance is 1m, however
the Bumblebee2’s location on Kratos (elevated and set back from the front) means that this undetectable zone is
contained entirely within the robot’s physical envelope. A detailed description of our sensing algorithms is found in
Section 4.3.

To meet design objective 9, Kratos is equipped with a Hemisphere A100 GPS receiver, located at the top of
the sensor tower. Using WAAS differential corrections, it provides global position data to 0.6 m accuracy, as well
as heading and velocity at 10Hz via an RS232 serial connection. A Honeywell HMR3000 digital compass outputs
magnetic bearing with 1° accuracy at 20Hz, also over RS232. The compass is used for heading information at low
speeds, when GPS heading is unreliable, or during a GPS outage. Finally, for precise local motion estimates including
individual wheel speeds, Kratos uses two US Digital HB6M rotary incremental encoders, one mounted on each wheel
axle. Each encoder has a resolution of 2048 counts per revolution; the 4x quadrature input on the Labjack allows
Kratos to detect is own motion with a resolution of .1 mm.

The GPS receiver, camera and compass are all vertically aligned within the sensor tower, which is positioned
above the midpoint between the two wheels. In this way, all of Kratos’ sensors share the same reference location,

thus eliminating the need to perform frame transformations in software.

3.8 Safety

Kratos is equipped with a hardware emergency stop system (“E-Stop”) to ensure safe testing conditions. The E-Stop
can be manually activated via a red button mounted on the rear of the sensor tower. When enabled, the E-stop
disables the input signal to the Victor884 motor controllers, causing the Kratos to come to an immediate stop. A
independent wireless E-Stop system with a range of 75 feet has been designed to operate in parallel with the manual

E-Stop. Because Kratos’” maximum speed is below 5 mph, no hardware speed cutoff is necessary.

4 Software

4.1 Software Innovation

Because our hardware efforts were hindered by time and budget limitations, we aimed to solve the challenges of this
competition by combining proven methods with our own ingenuity to form elegant and innovative software solutions.

Our stereo obstacle detection algorithm (Section 4.3.1) is based on an algorithm proposed by [7] in 2005. A main
advantage of this algorithm over other stereo processing techniques is that it does not rely on detecting a ground
plane for reference, which makes high-accuracy depth information for grass or asphalt unnecessary. We made several
simplifications to the original algorithm to increase performance: rather than searching inverted cones above each
point, we search inverted triangles and constrain the difference in depth between the points. In addition, only every
other point in each triangle is examined.

Our lane detection system (Section 4.3.2) uses a custom set of filters (color, width, and obstacle) to produce
a heatmap representing the probability of a yellow or white lane passing through a given location. We then fit
parabolas to the map using RANSAC, allowing for better performance around turns, and further improve these
results by extending the ends of the lines using a greedy search. The combination of these methods detects a variety
of lane shapes with better real-time performance than traditional Hough transforms or Canny detectors.

Our state estimation system (Section 4.4) uses a square root formulation of the central difference Kalman filter.

This represents an important innovation over previous positioning approaches deployed in the IGVC. Relative to the



popular extended Kalman Filter, the SRCDKF achieves higher positioning accuracy, and the square root formulation
completely eliminates susceptibility to numerical error, because only valid covariance matrices can be represented.
Additionally, in recognition of the fact that magnetic north varies with location, we estimate a bias between the
compass heading and GPS heading, further improving the accuracy of our position estimates.

Another software innovation is our use of a closed-loop path tracking system (Section 4.6). We adapted a control
law for a car-like robot for use on our differential drive robot. Closed-loop path following has a number of advantages
over open-loop systems: Paths may be planned at a slower rate than the path tracking controller is updated; paths
may be planned with a crude vehicle dynamics model to increase planning speed, and the path tracking controller
will still stably track the desired path; and finally the closed-loop feedback will allow the system to track the desired
path more accurately through disturbances such as hills, potholes, and sand traps. The specific control law we

implemented provably converges to the desired path.

4.2 Platform

Kratos’ two computers run the Windows Server operating system for ease of use and maximal hardware compatibility.
All software is written in platform-independent C++ using the Visual Studio IDE. The Newmat and wykobi libraries
provide linear algebra and geometry functionality respectively, and the Qt library and Designer allow for rapid
multi-platform GUI development. Each software component runs as an independent program connected to a central
server using Carnegie Mellon’s Inter-Process Communication (IPC) platform [9], which provides an AP for message

publishing and subscription, serialization, and timing.

4.3 Vision
4.3.1 Obstacle Detection

The first step in stereo obstacle detection is the generation of a depth map. Point Grey’s stereo vision library computes
a disparity map by matching similar pixels between the two stereo images. Leveraging advanced knowledge of the
camera’s intrinsic characteristics as well as the inverse relationship between disparity and distance, the disparity map
is converted into a depth map of each matched point in the image.

Stereo obstacle detection’s primary shortcoming is the imperfection inherent to disparity maps; pixel matching
is difficult in areas with low texture, poor lighting, or uneven contrast. To improve the quality of its disparity map
generation Point Grey’s library imposes several validation checks on points in the disparity map, including rejecting
pixels in low texture areas or that match to a large number of other pixels. Another significant problem with stereo
vision is its inherent minimum and maximum sensing distances. Though the maximum sensing range is limited by
the stereo pair’s physical baseline separation, the 18 meter effective detection range provided by the Bumblebee?2 is
more than adequate for the IGVC. Similarly, close objects are not in the field of view of both cameras, resulting in a
minimum sensing range. We designed around this constraint by recessing the sensor tower, resulting in a minimum
detection distance that does not extend beyond the front of the robot. After computing a depth map we apply a
simplified version of the obstacle detection algorithm proposed by Manduchi et al. [7], which searches for pairs of

points that are roughly vertical (Algorithm 1). The results of our stereo obstacle detection are shown in Figure 6.

4.3.2 Lane Detection

Our lane detection algorithm functions in three phases. First, a series of filters are applied to each pixel in the image
to determine whether it might fall on a lane line. Two color filters respond to pixels that correspond to the yellow and
white colors of lane markings, while a rectangular pulse width filter responds to edges of the correct width for a lane

marking (adjusted by vertical location in the image). Finally, an obstacle filter raises the score of pixels that do not



(a) Camera Image (b) 3-D Map (c) Obstacle Points
Figure 6: Stages of Obstacle Point Detection

Input: Depth Map, MaxDepthDif f = .3 meters, MinHeightDif f = .3meters, MaxHeightDiff = .5
meters, MinAngle = 80 degrees
Output: Obstacle Points

foreach Point P do

T = the inverted triangle of pixels above P;

foreach Point Q in T do

HeightDif f = abs(Height(Q) - Height(P));

DepthDif f = abs(Depth(Q) - Depth(P));

XDiff = abs(LateralPosition(Q) - LateralPosition(P));

GroundPlaneAngle = AngleBetweenGroundPlaneAndPoints( P, Q);

if DepthDiff < MaxDepthDif f and MinHeightDif f < HeightDif f < MaxHeightDepth and
HeighDiff/XDif f > tan(MinAngle) then

FlagAsObstacle(P);
FlagAsObstacle(Q);
end
end
end

Algorithm 1: The depth map to obstacle points algorithm.

fall on an obstacle. The results of all three filters are fused into a “heat map” indicating the likelihood that each pixel
falls on a lane marking. The RANSAC algorithm then attempts to find the parabolic fit that passes near the most
lane pixels [3]. Because a parabola does not perfectly describe the geometry of a lane, a greedy pixel-by-pixel search
is performed from the furthest pixel in the lane marking. Figure 7 demonstrates the stages of the lane detection

algorithm.

4.3.3 Vision Results

Our stereo obstacle detection scheme is able to reliably detect obstacles up to 18 meters (60 feet) away, with the
number of obstacle points detected increasing exponentially as the distance decreases (Figure 8), thus meeting design
objective 8. After testing, we determined that the depth calculations performed by Point Grey’s libraries showed a

slight bias at long distance. We accounted for the bias by empirically fitting a correction function, yielding

2

— 4
Ga = 100000 (dm)" + dm,

where d,,, is the measured depth and d, is the actual depth.

Our lane detection algorithm was tested extensively during the DARPA Urban Challenge. We evaluated algo-
rithmic performance on 200 images along a highway, with one solid lane marking and several dashed lane markings.
Between two and three lanes are visible in each image. In the 200 images, we find that one lane is found in 7% of
images, two lanes are found in 88% of images and three are found in 5% of images. In all 200 images, only 5 false

positives were observed. We therefore believe that our lane detection algorithm successfully fulfills design objective

10
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Figure 8: Stereo Vision Results

4.4 State Estimation

We use a square root central difference Kalman filter (SRCDKF) to fuse GPS, wheel encoder, and compass data
into a near-optimal estimate of the vehicle’s position[10]. The central difference Kalman filter (CDKF) is a type
of sigma point filter like the unscented Kalman filter (UKF) which uses a deterministic set of points to represent
a multivariate Gaussian distribution over states and measurements. When propagated through nonlinear process
and measurement models, these points represent the resulting posterior Gaussian random variable accurately to the
second order Taylor series expansion of the nonlinear system. In contrast, the popular extended Kalman filter (EKF)
is only accurate up to the first order.

To obtain numerical stability and efficiency, the square root formulation of the CDKF manipulates the lower
triangular Cholesky factor of the error covariance matrices. In this way the represented covariance matrices are

necessarily symmetric and positive definite. The computational complexity is O(L3) where L is the length of the
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state vector. We represent the state of the robot with a six variable state vector,

(SIS SIS

where z is the vehicle = coordinate in meters in a Cartesian local frame, y is the vehicle y coordinate in meters,
6 € [0,27) is heading, 6 € [0,27) is a bias between compass heading and GPS heading, v, is right wheel tread speed

in m/s, and v; is left wheel tread speed in m/s.

4.4.1 Process Model

We use a discrete time model of a differential drive robot given by Larsen et al. [6]

w(t) + (=520 ) sin (6(1) + 290 ) dt
y(t) + <M) cos (0(¢) + o®)dt gt
X(t+dt) = o(t) + (1520 gt

5(t) + mdt

Ur(t) + ’f]gdt

vi(t) + madt

where n = [n;  m2 m3]7 is a Gaussian random variable and dt is the integration time step of the system (approxi-

mately 1/20s in our implementation).

4.4.2 Measurement Models

The filter incorporates sensor measurements using nonlinear measurement models that predict the value of a given
sensor measurement from the current estimate of the state variables. GPS position measurements are predicted to
be

YGPS Position (t) =
( y(t) + aq

z(t) + oq )

where o = [a;  ap]? is a Gaussian random variable corrupting the x and y GPS measurements. The GPS heading

measurement is predicted to be

YGPps Heading(t) = (e(t) - WU(UT(t) + 'Ul(t)) + C) %271',

where u(x) is the Heaviside step function, ¢ is Gaussian noise corrupting the GPS heading measurement, and %
is the modulo operator. When the robot is traveling in reverse, the GPS measured direction is opposite the robot
heading. The mu(v,(t) +v;(t)) term incorporates this effect by subtracting 7 from the predicted heading value when
the robot is traveling backwards. The GPS speed measurement model is

vp(t) + vy (t)

YGPS Speed (t) = — +0o
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Figure 9: Sample input measurements and filter output.

where o is Gaussian noise in the GPS speed measurement. The absolute value reflects the fact that the GPS speed
is always a positive reading. Measurements of the vehicle’s wheel speed are provided by encoders, which use the
following measurement model,
vp(t) + & >

)

YWheel Encoders (t) == < ’Ul(t) n 52

where £ = [¢;  &]7T is a Gaussian random variable. Finally, we take the compass measurement model to be

YCompass Heading(t) = (G(t) + 6(t) + ﬂ) %271',

where ( is Gaussian noise and §(t) is the estimated bias between the compass heading and GPS heading. This bias
term allows the filter to automatically correct for magnetic variation by learning a correction factor based on GPS

heading.

4.4.3 Testing and Results

The SRCDKF was implemented first in Matlab and checked against an implementation of a linear Kalman filter
before being transcribed into C++. The C++ implementation was verified against the Matlab code and tested in
a simulator of the process and measurement dynamics before being deployed on the robot. Fig. 9 shows sample
heading and position estimates from the filter. We expect the improved accuracy and stability of the SRCDKF to

increase the reliability and safety of our robot.

4.5 Navigation

Kratos’ navigation scheme follows a cost map approach: the environment is gridded into rectangular cells, which
each have an associated numerical cost. With this environmental representation, path planning can be reduced to

the well-understood graph search problem.

4.5.1 Cost Map Generation

Stereo points are stored in a dedicated cost map representing the camera’s field of view in front of the robot. Each

cell in the stereo cost map is assigned a numerical cost according to

C(P) = maX(kcleara min(l, N(P))kﬁrst + max(07 N(P) - 1)kadditional)a (2)
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Figure 10

where C(P) is the cost associated with the cell containing the point P, N(P) is the number of obstacle, lane, or
pothole points in the cell, kcear is the cost associated with a clear cost cell, kg, is the cost associated with the first
stereo point in a cell, and k.qqitional 18 the added cost for each additional stereo point.

The camera’s field of view is divided into discrete angular regions. Clear cells closer than the nearest non-clear cell
in each region as well as all occupied cells are transformed into global coordinates according to the state estimation
data associated with the stereo capture and averaged into the global cost map according to a set learning rate. By
initializing the cost map’s cells with a cost greater than k¢jear, oOpen cells’ costs are lowered as they are viewed to be

clear. Figure 10a demonstrates a cost map generated from stereo data.

4.5.2 Waypoint Selection

Waypoints are presorted into the shortest overall path by enumerating all possible permutations. When lane following,

the target waypoint is inferred by extending forwards the center of the furthest lane markings seen.

4.5.3 Path Planning

Path planning is accomplished via a 2D A* graph search from the robot’s current position to the robot’s destination
waypoint. Search nodes correspond to the sum of all cost cells within the robot’s footprint (a square with side length
equaling the robot’s longest protrusion from the state estimation point) at a given point, and nodes are expanded
by allowing transitions to the eight neighboring cost cells. Path cost is determined by the sum of footprint costs at
each node in the path added to the path’s length. The heuristic function determines the minimum possible path
cost to the goal from a node, assuming all cost cells are unseen. Because the heuristic may overestimate the path
cost from a node it is neither admissible nor consistent, leading to a non-optimal though complete search [8]. While
removing the assumption that all costs to the goal are the unseen terrain cost returns the heuristic to optimality, the
associated performance decrease necessitates its use. By utilizing a binary heap and minimizing memory allocation
requests, the planner is able to operate at roughly 5Hz. Figure 10b shows a path planned through a cost map. The
path planner also determines the cost per unit distance of the path it recommends. If the cost per unit distance

exceeds a threshold value, the path is assumed to lead to a collision and a low speed is commanded.

4.6 Path Tracking

Paths are specified as a desired series of positions, 7(¢). Our path tracking controller minimizes the crosstrack error

e(t), defined as the signed distance from the closest point on the path to the point p(t) between the robot’s wheels,

le(t)] = miny, [[7(n) — p(E)]-
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Hoffmann et al. [4] show that the crosstrack error metric in a point model of the robot evolves according to

where v(t) is the robot speed and ¥ (t) is its heading relative to the trajectory. The heading control law is as given

in Hoffmann,

kee(t)
o(t)

If the heading is tracked perfectly, the cross-track error will provably converge to zero. We use proportional control

6(t) = 9(t) + arctan

on the vehicle’s angular velocity to track the desired heading. Finally, the path tracker recommends individual wheel

speeds based on max robot speed and path curvature.

4.7 Speed Control

Speed control is accomplished using proportional-integral controllers. The controller design is based on a first order
exponential approach model of the motors, y =V - K- (1 — e(%t)), where y is motor speed, V' is input voltage and

t is time. The constants of K and 7 were found experimentally by curve fitting to motor step response data. The

V() _ a
U(s) — s+b?

gain selection was performed using the root-locus method. The control gains were then fine-tuned by hand. Figure

transfer function is of the form

which is always stable with PI control if delay is neglected. Preliminary

11 shows the speed control response at low and high speeds. The response shows good tracking with zero steady

state error. Further tuning may necessary to achieve better performance.
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Figure 11: Robot Speed Control Response

5 Conclusion

We believe that the design and implementation of Kratos, as presented in this paper, represents a robust and reliable
robotic system that will be competitive at the 2008 Intelligent Ground Vehicle Competition. We hope that this paper
demonstrates the innovative problem solving performed by our team members. We would like to further acknowledge
the exceptional education benefits that arise from bringing a complex, interdisciplinary project like this through the
entire design process. Thanks to the IGVC we have gained greater respect and understanding of the engineering

process and look forward to competing this year and in years to come.
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